A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics

نویسندگان

  • Takahiro Miyoshi
  • Kanya Kusano
چکیده

A new multi-state Harten–Lax–van Leer (HLL) approximate Riemann solver for the ideal magnetohydrodynamic (MHD) equations is developed based on the assumption that the normal velocity is constant over the Riemann fan. This assumption is same as that used in the HLLC (‘‘C’’ denotes Contact) approximate Riemann solver for the Euler equations. From the assumption, it is naturally derived that the Riemann fan should consist of four intermediate states for Bx 61⁄4 0, whereas the number of the intermediate states is reduced to two when Bx = 0. Since the intermediate states satisfied with all jump conditions in this approximate Riemann system are analytically obtained, the multi-state HLL Riemann solver can be constructed straightforwardly. It is shown that this solver can exactly resolve isolated discontinuities formed in the MHD system, and hence named as HLLD Riemann solver. (Here, ‘‘D’’ stands for Discontinuities.) It is also analytically proved that the HLLD Riemann solver is positively conservative like the HLLC Riemann solver. Indeed, the HLLD Riemann solver corresponds to the HLLC Riemann solver when the magnetic field vanishes. Numerical tests demonstrate that the HLLD Riemann solver is more robust and efficient than the linearized Riemann solver, and its resolution is equally good. It indicates that the HLLD solver must be useful in practical applications for the ideal MHD equations. 2005 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Approximate Harten-Lax-van Leer Riemann Solver for Relativistic Magnetohydrodynamics

An approximate Riemann solver for the equations of ideal relativistic magnetohydrodynamics is presented. The solver belongs to the so-called Harten-Laxvan Leer (HLL, [1]) family of solvers where an initial guess to the characteristic wave speeds is given without any knowledge a priori of the solution. Our proposed method of solution generalizes to the relativistic case the classical five-wave H...

متن کامل

A five-wave HLL Riemann solver for relativistic MHD

We present a five-wave Riemann solver for the equations of ideal relativistic magnetohydrodynamics. Our solver can be regarded as a relativistic extension of the five-wave HLLD Riemann solver initially developed by Miyoshi and Kusano for the equations of ideal MHD. The solution to the Riemann problem is approximated by a five wave pattern, comprised of two outermost fast shocks, two rotational ...

متن کامل

An HLLC Solver for Relativistic Flows – II. Magnetohydrodynamics

An approximate Riemann solver for the equations of relativistic magnetohydrodynamics (RMHD) is derived. The HLLC solver, originally developed by Toro, Spruce and Spears, generalizes the algorithm described in a previous paper (Mignone & Bodo 2004) to the case where magnetic fields are present. The solution to the Riemann problem is approximated by two constant states bounded by two fast shocks ...

متن کامل

HLLC solver for ideal relativistic MHD

An approximate Riemann solver of Godunov type for ideal relativistic magnetohydrodynamic equations (RMHD) named as HLLC (“C” denotes contact) is developed. In HLLC the Riemann fan is approximated by two intermediate states, which are separated by the entropy wave. Numerical tests show that HLLC resolves contact discontinuity more accurately than the Harten-Lax-van Leer (HLL) method and an isola...

متن کامل

An HLLC Solver for Relativistic Flows

We present an extension of the HLLC approximate Riemann solver by Toro, Spruce and Speares to the relativistic equations of fluid dynamics. The solver retains the simplicity of the original two-wave formulation proposed by Harten, Lax and van Leer (HLL) but it restores the missing contact wave in the solution of the Riemann problem. The resulting numerical scheme is computationally efficient, r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005